If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20^2+b^2=24^2
We move all terms to the left:
20^2+b^2-(24^2)=0
We add all the numbers together, and all the variables
b^2-176=0
a = 1; b = 0; c = -176;
Δ = b2-4ac
Δ = 02-4·1·(-176)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*1}=\frac{0-8\sqrt{11}}{2} =-\frac{8\sqrt{11}}{2} =-4\sqrt{11} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*1}=\frac{0+8\sqrt{11}}{2} =\frac{8\sqrt{11}}{2} =4\sqrt{11} $
| 9x+198=63 | | 2x+1+7x+9=180 | | y/4+-15=-18 | | 4u+4(u+10)=-2u-20 | | y-8=1/4(-1+2y) | | -8.8=-1.3+y/3 | | 3x-10x=x | | 1/y+1/4=1/4 | | P^210p-24=0 | | 5(20-d)10d=130 | | 3(2x+1)=6x+1) | | X-3-6(x-1)=2(6-x) | | 3a-5=29+7 | | 2(w+3)=5 | | 5+9h=22.82 | | 9(2x+1)=5(3x-7)-7 | | 2x+14+75=14x-7 | | 8x+3=2x+10 | | (2x+35)=(8x-37) | | 2x35=8x-37 | | 4a-5=33 | | 3y-y=48 | | -21x=-3 | | 11x-76=7x-44 | | 67+74+13u=180 | | P=7+3.5m | | (2x-13)=(7x-68) | | 3(2g+3-4g=3 | | 246=6(-8+7r) | | 1/3(-3p-9=11p-15 | | x/4.5=2.2 | | x-43=-113 |